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Volumetric defect types commonly observed in the additively manufactured
parts differ in their morphologies ascribed to their formation mechanisms.
Using high-resolution X-ray computed tomography, this study analyzes the
morphological features of volumetric defects, and their statistical distribution,
in laser powder bed fused Ti-6Al-4V. The geometries of three common types of
volumetric defects; i.e., lack of fusions, gas-entrapped pores, and keyholes, are
quantified by nine parameters including maximum dimension, roundness,
sparseness, aspect ratio, and more. It is shown that the three defect types share
overlaps of different degrees in the ranges of their morphological parameters;
thus, employing only one or two parameters cannot uniquely determine a
defect’s type. To overcome this challenge, a defect classification methodology
incorporating multiple morphological parameters has been proposed. In this
work, by employing the most discriminating parameters, this methodology
has been shown effective when implemented into decision tree (>98% accu-

racy) and artificial neural network (>99% accuracy).

Additive manufacturing (AM) technologies such as laser powder bed
fusion (L-PBF), with its layer-by-layer fabrication strategy and flex-
ible feedstock, offer advantages over conventional manufacturing
and can fabricate complex-shaped parts, consolidate assemblies
into integral components, reduce lead time, and manufacture in
remote locations"’. However, AM parts are also prone to be laden
with volumetric defects® In the machined condition, these defects—
commonly lack of fusions (LoFs), gas-entrapped pores (GEPs), and
keyholes (KHs)—act as stress risers and are detrimental to the
mechanical, especially fatigue, properties of AM parts®®. For L-PBF
processes, LoFs mainly form due to insufficient overlap between
adjacent melt pools, between layers or laser tracks’®, which can be
the result of insufficient energy input or excessively large hatch
distance (see Fig. 1(a)). KHs form in overheating conditions due to
the “pinch-off” from the bottom of the depression inside the melt
pool®® (see Fig. 1(b)). On the other hand, GEPs are essentially
“bubbles” of inert gas inside/between powder particles entrapped
within the melt pool due to the combined action of buoyancy,

Marangoni force, the turbulence due to vapor recoil, and the rapidly
moving solidification front" (see Fig. 1(a & b)). GEPs cannot be
avoided and are typically present even under optimum processing
conditions'*",

For L-PBF processes, these volumetric defects contain shielding
gases (such as argon (Ar)), which are often insoluble to metal. There-
fore, the removal of the defects is challenging, if not impossible, since
it would require the complete expulsion of such gases through the
bulk of the metal. For instance, the author’s recent work had shown
that Ar is insoluble in titanium and, during hot isostatic pressing (HIP),
back pressure builds up within the defects as they shrink which
counteracts the pressure of the working medium and prevents full
defect closure' . Indeed, driven by the internal pressure, defects had
been observed to regrow during the post-HIP heat treatment”'S,
Therefore, compared to remedial efforts, optimizing the AM process
parameters to minimize both the size and population of defects during
fabrication is perhaps a more crucial step to ensure the structural
integrity of AM parts”.
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Process optimization for a new material can be labor-intensive
and require the fabrication/characterization of a large number of
microstructural coupons with incrementing process parameters to
map the print quality of a parameter space. For instance, only 5 var-
iations of 3 process parameters (such as laser power, laser speed, and
lahatch dist for L-PBF) produce 125 coupons. The coupled nature
between processing conditions and the classification of volumetric
defects® can help expedite the procedure by indicating the print
quality as well as the course of correction. For instance, the presence of
either LoFs or KHs suggests that the process parameters are non-
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Fig. 1| Schematic illustrations of defects formation during L-PBF. a Formation
of LoFs and GEPs. b Formation of KHs and GEPs.
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Fig. 2 | Visualization of volumetric defects in L-PBF coupons. Front, top, and
isometric views of the XCT scan region of coupons fabricated using a P2°*V%* and
b P2%%V% parameters. Scatterplots in the 3D space of size, aspect ratio, and
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optimal. Removing LoFs requires increasing energy input (increasing
laser power and/or reducing laser speed) and/or reducing layer
thickness/hatch distance. To remove KHs, energy input would need to
be reduced. Conversely, the accurate classification of defects can also
enable effective seeding of desired defects in material to understand
the critical effects of volumetric defects on fatigue behavior. Histori-
cally, information on defects has been two-dimensional (2D) and is
obtained by polished-section microscopy. Recently, the widespread
adoption of X-ray computed tomography (XCT) systems permitted
three-dimensional (3D) characterization of volumetric defects which
facilitates their more reliable classification.

For defect classification, although limited attempts with machine
learning (ML)—such as K-means clustering”’—have been made, the most
common approach is perhaps by setting limits on morphological
parameters such as size, sphericity, and aspect ratio? . For a defect, its
sphericity is the surface area of an equal-volume sphere divided by that
of itself; and aspect ratio is the ratio of its smallest to its largest
orthogonal dimensions. Owing to their origins, the sphericity and the
aspect ratio of the LoFs (see Fig. 2(e)) are typically the lowest”**%,
followed by those of the KHs (see Fig. 2(g))** and GEPs (see
Fig. 2())>*7. As for size, LoFs can be either very large (up to a few
millimeters between layers) or very small (down to a few micrometers
between molten tracks). In contrast, KHs observed in L-PBF parts are
typically smaller than 100 um (i.e., dependent on the laser spot dia-
meter) and GEPs are even smaller. Even though the formation
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sphericity showing the volumetric defects observed in ¢ P2V and d P20%y 0%
coupons. Appearances of selected defects, e a LoF, fa GEP, and g a KH are
also shown.
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Table 1| Classification criteria for defects in L-PBF Ti-6Al-4V available in the literature proposed based on XCT scans of
different voxel sizes. S, AR, and Sph. represent the size, aspect ratio, and sphericity of the defects, respectively

Study Voxel Size (um) LoF GEP KH

S (um) AR Sph. S (um) AR Sph. S (um) AR Sph.
Snell”’ 8.9 >100 - <0.6 <100° >0.5% >0.6° >100 <0.5 -
Kasperovich? 0.3 >100 - <0.7 <50° - >0.7° >50 - >0.7
Vilaro?® N/A >100 - - - - - - - -
pr20%\/0% 1 10.1-47.8 0.1-0.6 0.5-0.9 10.6-13.2 0.6-0.8 0.8-0.9 - - -
(This work)
PaZRRV/ARCE 1 10.5-59.9 0.2-0.5 0.5-0.9 11.1-28.5 0.6-0.9 0.8-1.0 30.3-65.8 0.6-0.8 0.7-0.9
(This work)

Criteria for GEPs were not defined by Snell et al. and Kasperovich et al. Rather, they were implied from the criteria for LoFs and KHs.

mechanisms of various types of defects are well known’? %, classifying

them according to one or two simple measures of size, sphericity, and
aspect ratio has been challenging. This could be explained by different
defect types sharing overlaps in their value ranges of these parameters;
therefore, they cannot be distinguished by a clear threshold. In addi-
tion, due to differences in defect characteristics resulting from different
fabrication platforms, process parameters, and XCT scanning para-
meters, discrepancy exists among existing criteria (see “Results” section
for the complete evaluation of existing classification criteria)®* ¢,

This work endeavors to devise a robust approach to classify the
volumetric defects and identify the most distinguishing features
among them using L-PBF, as the most commonly utilized AM process,
and Ti-6Al-4V, as a material with a lot of applications in aviation, space,
and medical fields®. A large quantity of Ti-6Al-4V coupons were fab-
ricated by L-PBF with varying process parameters (laser power (P),
laser speed (V), and hatch distance (H)) to induce different types of
volumetric defects. The coupons were then XCT scanned and the data
post-processed to inspect defects and characterize them with a total of
nine morphological parameters. A total of 1970 defects were manually
labeled, their morphological parameters calculated, and the statistics
of the morphological features analyzed. It was shown that overlaps of
morphological parameters always existed in their value ranges among
different defect types and using multiple parameters could reduce the
probability of a defect falling on multiple overlaps. Implementing this
philosophy, decision tree- and artificial neural network-based defect
classification schemes utilizing multiple morphological parameters
have been demonstrated with success.

Results

Evaluation of existing classification criteria

Although ML methods such as K-means clustering? have been used, the
most common approaches for defect classification are still based on
thresholds set on one or two parameters among size (such as the
maximum dimension), sphericity, and aspect ratio”*. The existing
limit-based criteria in the literature for distinguishing LoF, GEP, and KH
defects based on XCT scans are summarized in Table 1. The listed cri-
teria have all been established for Ti-6Al-4V fabricated by L-PBF pro-
cesses. However, the defects analyzed in these studies were induced
from different L-PBF systems, fabricated with different process para-
meters, and/or XCT scanned at different voxel sizes, which likely have
caused some variations from one another even for the same defect
types. For instance, as shown in Table 1, although Snell et al., Kasper-
ovich et al., and Vilaro et al. have all specified that LoFs should be larger
than 100 um, Snell et al. and Kasperovich et al. also stipulated thresholds
for sphericity. LoFs are defined to have sphericity lower than 0.6 and 0.7
by Snell et al. and Kasperovich et al., respectively. In addition, Snell et al.
and Kasperovich et al. have proposed KHs to, respectively, be greater
than 100 pm and 50 um, with the former based on du Plessis et al.”. One
of the reasons for the difference in the size threshold for KHs might
have been the use of different voxel sizes during XCT scans (see Table 1

for the voxel sizes used in these studies). The use of smaller voxel size
can result in the detection of smaller-sized defects®.

The efficacy of the classification criteria shown in Table 1 has been
evaluated in this study using manually labeled (see “Methods” for
labeling procedure) defects contained in coupons fabricated with P~%%
V% (i.e., laser power decreased by 20% from manufacturer recom-
mended parameters, which are provided in “Methods section”) and P
¥20%-4% (j.e., laser power increased by 20% and laser speed decreased
by 40% from manufacturer recommendation) parameters. The P20%y®%
and P?V% parameters respectively correspond to overall under-
heating and overheating conditions and, therefore, are expected to
induce LoFs and KHs. The GEPs are essentially intrinsic to the L-PBF
process and are expected to be present in both conditions. Some LoFs
may also form in the overheating condition due to the highly turbulent
melt pools and the resulting highly non-uniform molten track cross-
sections. Indeed as shown in Fig. 2(a, b), manual defect labeling,
agnostic of the processing conditions of each coupon, has confirmed
the presence of only LoFs and GEPs in the underheating condition and
all three defect types in the overheating condition.

In addition, the PV coupon also contains significantly more
GEPs compared to the P2*V%* one, which may be ascribed to the more
severe melt pool turbulence in the overheating condition that may
have hindered GEPs’ escape. It is also possible that very small KHs
exist® in the P2*V 4% coupon; however, limited by the XCT’s resolu-
tion, they may be mislabeled as GEPs. Nevertheless, within this size
range (i.e., <30 um) the effects of KHs and GEPs on fatigue behavior are
similar; the mislabeling is therefore not consequential. The size,
sphericity, and aspect ratio of LoFs, GEPs, and KHs in these two cou-
pons are presented in 3D space in Fig. 2(c, d). From the labeled data,
the ranges of the three parameters for each defect type are reported in
Table 1 as well as shown in Supplementary Fig. 1(a-f) for comparison.
Visual comparisons of the classification criteria listed in Table 1 are also
provided in Supplementary Fig. 2.

It is evident that the direct application of these criteria cannot
fully classify the defects within the two coupons, which is likely due to
the aforementioned differences in L-PBF process and XCT scanning
parameters. More importantly, it is noted from Table 1 that the three
defect types observed in the P2V and P2V coupons had
overlaps of various degrees in the ranges of all three morphological
parameters. Therefore, the popular approach of setting limits on one
or two of these parameters may not be sufficient to determine the
defect types. Therefore, the simultaneous usage of a few most dis-
criminating parameters may be needed.

Statistics on morphological parameters of volumetric defects

Figure 2(c, d) and Table 1 indicate that the LoFs, GEPs, and KHs all
have some degrees of overlap in size (i.e., max. axis), aspect ratio, and
sphericity. In P2%%V4% (see Fig. 2(d)), both KHs and GEPs are
observed at the aspect ratio of 0.8, and both LoFs and KHs are found
to have a sphericity of 0.8. An overlapping nature refers to the
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Fig. 3 | Distributions of morphological parameters for LoFs, GEPs, and KHs.
Parameters include a max. axis, b aspect ratio, ¢ sphericity, d solidity, e sparseness,
fextent, g roundness, h elongation, and i flatness. Examples of each type of defects

Elongation

Flatness

are also shown in the panels with the values of their morphological parameters
pointed by triangles of respective colors. The fitted curves are Kernel Smooth for
max. axis, while Weibull distributions are used for all other parameters.

tendency of having a common measure of certain morphological
parameters for the considered types of defects, which is perhaps the
reason why existing criteria, thresholding one or two parameters, are
insufficient to reliably classify the volumetric defects******, It
naturally follows that a criterion utilizing multiple parameters should
reduce the probability of misidentification. For instance, a 50%
overlap in each parameter between two defect types only translates
to 25% overlap (50% x 50%) when two parameters are utilized, and
12.5% (50%x%50%%50%) for three parameters, and so on.

Hence, six other morphological parameters are calculated in this
study for each labeled defect to facilitate their classification. These
parameters include solidity, sparseness, extent, roundness, elonga-
tion, and flatness (see Supplementary Table 2 and Supplementary
Fig. 3 for definition and graphical representation of the parameters).
These morphological parameters are derived from the understanding
of defects and their potential impacts on L-PBF part fatigue perfor-
mance, not only reducing the data dimension, but also increasing the
interpretability of classification. In addition to the defects in P20V
and P2V% coupons, defects observed in XCT scans of 20 other
coupons fabricated using altered process parameters are also visually
inspected, labeled, and their morphological parameters calculated

(see Methods section for complete details on fabrication and labeling
of defects). The distributions of all LoFs, GEPs, and KHs in each of the
nine morphological parameters are presented and compared in Fig. 3.
Similar to size, aspect ratio, and sphericity, overlaps also exist in the six
additional parameters among different defect types. In addition, the
degree of overlaps appears to depend on the defect type and the
morphological parameter calculated. For instance, as shown in
Fig. 3(d), while the solidity range of GEPs is completely contained
within that of the LoFs, this overlapped range only accounts for ~35% of
LoFs’ total range. In addition, unlike solidity, the roundness ranges of
these two GEPs and LoFs only have a limited overlap (Fig. 3(g)).

The degrees of overlaps in all nine morphological parameters
between each two of the three defect types have been quantified and
presented in Fig. 4(a-c). A smaller overlap indicates a larger differ-
entiating potential of a parameter. For instance, it is quite notable from
Fig. 4(a), that the max. axis is the most distinguishing feature between
KHs and GEPs, followed by sphericity which is significantly less effective.
This is intuitive since both GEPs and KHs are quite spherical-with KHs
being less so—but the size of the latter is significantly larger (Fig. 1).
However, due to the large size range of LoFs (Fig. 3(a)) that covers the
entire ranges of GEPs and KHs, the max. axis is no longer effective in
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color represents the percentage that the overlapped ranges occupy the respective
total ranges of each defect type.

differentiating GEPs from LoFs and KHs from LoFs. Instead, since LoFs
shape tends to be flat and irregular (see examples given in Fig. 3), they
are most effectively distinguished from GEPs and KHs by roundness and
sparseness (see Fig. 4(b, c)). The sparseness ranges of KHs and LoFs are
the least overlapped (Fig. 3(e)) in contrast to the roundness being the
least for GEPs and LoFs (Fig. 3(g)). Counterintuitively, significant over-
laps in sphericity between GEPs and LoFs and between KHs and LoFs are
noticed in Fig. 3(c), which is primarily due to the existence of very small
LoFs (max. axis 10-20 um) which tend to have relatively high sphericity.

Based on the pairwise rankings presented in Fig. 4, a ranking of the
morphological parameters’ overall effectiveness in distinguishing the
three defect types can be generated. As shown in Table 2, the overall
ranking starts by choosing the least overlapped parameter from the top
of the pairwise lists, i.e., max. axis for GEPs and KHs (Fig. 4(a)), roundness
for GEPs and LoFs (Fig. 4(b)), and sparseness for LoFs and KHs (Fig. 4(c)).
The max. axis ranges of GEPs and KHs only contain 0.79% of total defects
in their overlapped portions, which is far superior to the roundness of
GEPs and LoFs, and sparseness of LoFs and KHs. Hence, max. axis has the
Rank 1 (see Table 2). Afterward for Rank 2, having max. axis eliminated,
sphericity from the pairwise rank of GEPs and KHs is compared with the
roundness of GEPs and LoFs and sparseness of LoFs and KHs. This
selects sparseness as the second most differentiating parameter. This
process is continued until all nine parameters are ranked.

Defect classification using decision tree

The facts that different degrees of overlap exist in the morphological
parameters and that the most distinguishing parameter vary among
different pairs of the three defect types suggest the effectiveness of a
decision tree based on multiple morphological parameters to effi-
ciently classify volumetric defects. Such a decision tree would “stem”

from the most distinguishing parameter among the three pairs,
“branches” at the boundaries of the overlapped ranges, and “grows”
down the ranks of the parameters. As illustrated in Fig. 5(a, b), the main
stem of the decision tree, which contains fully unclassified defects,
splits at each node into binary branches (i.e., containing partially
classified defects of two or fewer potential types). Starting from the
“root”, the nodes on the stem sequentially select from the most dis-
tinguishing parameters, such as the list shown in Table 2. The stem
grows until the end of the list or the exhaustion of fully unclassified
defects. At each branch, depending on the potential types of defects
contained, then traces down an appropriate binary list in Fig. 4(a-c)
until the end of the list or the exhaustion of defects.

Following this approach, the decision tree is first validated with
5-fold cross-validation for its consistency in classification, and it
achieves high classification accuracy of 97.9% with standard deviation
of 0.76%. Then a decision tree has been generated based on the
training data (i.e., randomly selected 70% of all the labeled defects,
leaving 30% as test data), as shown in Fig. 5(c). Based on the training
data, the distributions of the morphological parameters (similar to
Fig. 3), bar charts showing the degree of overlaps between the defect
types (similar to Fig. 4), and the overall ranking of the parameters
considering all defect types (similar to Table 2) are provided in Sup-
plementary Note 4. It is evident from Supplementary Table 3 that the
top 6 parameters from the overall ranking based on the training
dataset are identical to that of the complete dataset (Table 2). As
shown in Fig. 5(c), the stem of the decision tree branches at Node 1
according to the boundaries of the overlapped range of max. axis—
Rank 1 parameter in Supplementary Table 3—into two categories: GEPs
+LoFs and KHs+LoFs. The binary branches (GEPs + LoFs and KHs+LoFs)
then proceed down the respective ranks shown in Supplementary
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Table 2 | Generating overall ranks for the morphological parameters considering all defect types (i.e., LoFs, GEPs, and KHs)

Rank Percentage fraction of defects in the overlapped ranges Selected parameter
GEP & KH KH & LoF LoF & GEP

1. Max. Axis (0.79) Sparseness (4.30) Roundness (12.28) Max. Axis

2. Sphericity (73.91) Sparseness (4.30) Roundness (12.28) Sparseness

8 Sphericity (73.91) Roundness (8.44) Roundness (12.28) Roundness
Sphericity (73.91) Aspect Ratio (12.86) Roundness (12.28)

4. Sphericity (73.91) Aspect Ratio (12.86) Aspect Ratio (12.49) Aspect Ratio
Sphericity (73.91) Aspect Ratio (12.86) Sphericity (34.56)

58 Sphericity (73.91) Elongation (28.41) Sphericity (34.56) Elongation

6. Sphericity (73.91) Extent (29.79) Sphericity (34.56) Extent

7. Sphericity (73.91) Solidity (33.99) Sphericity (34.56) Solidity

8. Sphericity (73.91) Sphericity (59.42) Sphericity (34.56) Sphericity
Sphericity (73.91) Sphericity (59.42) Flatness (67.23)

9. Sphericity (73.91) Flatness (68.75) Flatness (67.23) Flatness

Figs. 5(b, ¢) until no more defects can be further classified. The stem of
the tree containing unclassified defects would continue to branch at
additional nodes according to lower-ranked parameters in Supple-
mentary Table 3. However, after Node 2, no more fully unclassified
defects remain. The so-generated decision tree, shown in Fig. 5(c),
yields 98.8% accuracy when classifying the testing dataset (i.e., the
remaining 30% of the labeled defects). Although the classification
accuracy reported here is solely based on labeled data (unlabeled data
were excluded), the model could potentially classify unlabeled data as
well. However, the unlabeled defects classified by the models could
not be verified as these defects could not be classified by human.

Defect classification using an artificial neural network

The methodology employed in the decision tree approach of utilizing
multiple morphological parameters—from the most discriminating to
the least—to classify defects can also be implemented in artificial neural
network (ANN). The ANN is a supervised ML technique that can estab-
lish the complex relationships between defect types and morphological
parameters of the defects using layers of connected nonlinear modules
called “neurons”®. In this work, using the morphological parameters of
a defect as the input layer, the ANN model would assign its confidences
(percent probability) in the defect being a GEP, LoF, or KH in the output
layer. The defect would be assigned to the type with the highest con-
fidence. The details regarding the construction of the ANN models,
including Bayesian optimization of their architecture, data used, and
the training procedure, are provided in Supplementary Note 6.

It is notable that the accuracy of ANN models does not always
improve with increasing morphological parameters. Instead, the best
accuracy is typically achieved by using a selected few most dis-
criminating parameters. Therefore, permutation feature importance
(PFI) analysis can be used to first rank the discriminating potential
among all the morphological parameters®. With an ANN constructed
containing all morphological parameters in its input layer, the PFI
analysis measures the “importance” of the morphological parameters
by separately permutating the values of each morphological para-
meter and calculating the increase in the misclassification rate. A
morphological parameter is deemed important if permutating its
values results in a large increase in the misclassification rate. The
rankings of the morphological parameters by the PFI analysis are
shown in Fig. 6(a), highlighting their importance. Interestingly, the PFI
ranking is similar to the one generated based on the relative data
overlaps (the right column of Table 2)—in fact, the top four most dis-
tinguishing parameters in both rankings are identical.

According to the ranking generated by PFI analysis (Fig. 6(a)), a
series of ANN models are constructed with an increasing number of
morphological parameters used, which respectively results in

classification accuracies of 98.3% (standard deviation: 0.33%), 98.8%
(standard deviation: 0.29%) and 99.2% (standard deviation: 0.58%) in
5-fold cross-validations when the top two, three, and four most
important morphological parameters are used. Including more para-
meters does not improve the accuracy of the ANN further. Then with
the same split of 70%/30% of the labeled defects as in the decision tree,
the essential architecture of the ANN model with four parameters in
the input layer (top four from Fig. 6(a)) and classification accuracy of
99.0% on testing data is displayed in Fig. 6(b), only showing the con-
nections among layers with relatively large weights. It includes two
hidden layers of neurons, each of which is a nonlinear function taking
the linear combinations of the previous layer’s output as its sole input
variable. As shown in Fig. 6(b), the first layer contains 24 neurons of a
logistics sigmoid activation function and the second layer contains 25
neurons of a hyperbolic tangent sigmoid activation function in the
second layer. The output layer then uses a SoftMax transfer function to
generate the probabilities of a defect being any of the three types.

Interpreting the nonlinear relationships between the input and
output layers of ANN is generally difficult. Despite this, tracing neu-
ronic connections with relatively large weights can shed some light
qualitatively. For instance, in Fig. 6(b), both KH and GEP types have
strong connections (being negative and positive, respectively) with
neuron 17 in the 2nd hidden layer, which receives strong inputs from
neurons 17, 18, and 22 in the 1st hidden layer—all of them are also
strongly connected with max. axis. This indicates that the distinction
between the KH and GEP types is more strongly influenced by max.
axis, which is consistent with ranking based on the degree of over-
lapped ranges shown in Fig. 4(a). Similarly, Fig. 4(c) indicates that
sparseness, roundness, and aspect ratio are the most distinguishing
factor between KHs and LoFs. This is reflected in the connections in the
ANN (Fig. 6(b)) noting that the LoF type is strongly connected to
neuron 4 in the 2nd hidden layer, which connects strongly with both
sparseness, roundness, and aspect ratio via neurons 18, 15, and 5 in the
1st hidden layer. On the other hand, KH type not only connects with
max. axis as mentioned above, but it also connects with sparseness,
roundness, and aspect ratio via neurons 17, and 4 in the 2nd hidden
layer and neurons 18, 15, 5, and 4 in the 1st hidden layer. A very similar
observation can be made in Fig. 6(b) regarding the connections from
GEP and LoF to sparseness, roundness, and aspect ratio, which is
consistent with the ranking shown in Fig. 4(b).

Discussion

This work has demonstrated that volumetric defects in L-PBF Ti-6Al-
4V, as identified from high-resolution XCT scans, can be classified into
KHs, GEPs, and LoFs at great accuracy by simultaneously utilizing
several morphological parameters which have relatively small overlaps
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Fig. 5| Decision tree for defect classification. a & b Schematic illustration of the methodology to generate the decision tree. ¢ Decision tree generated based on
the training data achieving an overall accuracy of 98.8% in the test data.

among the respective ranges of the three defect types. In fact, Fig. 3(a)
illustrates a very limited overlap between the max. axis ranges for GEPs
and KHs, which is echoed by the observations made from the neural
network (Fig. 6(b)) and suggests that a simple limit (e.g., at 30 um)
imposed on this parameter may be effective to distinguish the two

defect types in L-PBF Ti-6Al-4V. In fact, all but one KH have size over
30 um and all GEPs are smaller than 30 um. As a result, the decision tree
shown in Fig. 5(c) can be further simplified by ignoring the small
overlap of max. axis at Node 1, see Fig. 7. The accuracy of this simplified
decision tree is also quite high, reaching 98.8%.
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During the construction of both decision tree and ANN models, it
has been found that including more parameters does not always
increase the accuracy of the models. In fact, the accuracy of the deci-
sion tree approach does not increase after including the seven most
distinguishing parameters (see Fig. 5) and the ANN approach does not
gain further accuracy after including the fourth parameter. In either
case, extent and solidity do not improve the classification accuracy
even though both are similar measures to sparseness (second most
discriminating) and compare the volume of a defect with that of an
enclosing geometry (see Supplementary Fig. 3 and Supplementary
Table 2). The sparseness, extent, and solidity compare the volume of
the defect with a fitted ellipsoid, a bounding box, and a convex hull,
respectively. The superiority of the sparseness may be due to the
ellipsoids’ resemblance to GEPs and KHs and their dissimilarity to LoFs.
In contrast, such resemblance does not exist for bounding boxes or
convex hulls.

Leveraging ML methods to investigate defect features of dif-
ferent defect types from XCT requires understanding different ML
methods¥. In general, high-resolution XCT images can improve the
classification accuracy of ML methods. Incorporating the knowl-
edge of defects and their types into the data-driven analysis can
help the selection of appropriate ML methods and improve their
accuracy and interpretability. In this study, with a relatively small
amount of data, decision trees and ANN can model the nonlinear
relationships between defect features and defect types, achieving
high classification accuracy and sufficient interpretability. In com-
parison, other conventional ML methods (e.g., random forest,
support vector machine, Gaussian process) are difficult to interpret
with complex model structures; regression-based classification
methods (e.g., logistic regression) can only model the linear rela-
tionship inadequate for our data; deep learning methods (e.g., deep
neural network, convolutional neural network) need a huge amount
of data in intensive training to achieve highly accurate but hardly
interpretable results.

The morphological characteristics of defects depend on the
material, fabrication technology, and resolutions of the XCT scans.
For instance, the variations in thermal-physical properties among
materials such as thermal conductivity, specific heat, surface ten-
sion, etc. influence the melt pool dynamics® and can affect the size
and shape of defects of each type. Similarly, defect characteristics
are also influenced by feedstock, delivery method, heat source, and
scan strategy which can vary from one AM technology to
another?*~*!, Therefore, the same variations in process para-
meters performed in this work may result in different defect con-
tents in other materials, processes, and even the same material/

process but using a feedstock with different characteristics. In such
cases, the proposed methodology may need to be re-calibrated.
Lastly, the voxel size used during the XCT scans directly influences
the level of details of volumetric defects that can be captured. With
larger voxel sizes, scans can miss certain features of defects, such as
fine “ribs” on the KH surfaces, misidentify a larger LoF defect as a few
smaller ones, or leave smaller defects undetected altogether®>****, As a
result, the morphological parameters extracted from each defect and
their value ranges for each defect type obtained at low-resolution may
significantly differ from those at high-resolution, leading to higher
probability of defects mislabeling. For these reasons, the statistics of
defects’ morphological parameters, decision tree, and the ANN model
reported in this work are specific to L-PBF Ti-6Al-4V coupons, XCT
scanned at the voxel size of 1um (which offer a proper balance
between resolution and scan time). With the low-fidelity data labeled
from low-resolution scans, the efficacy of the methodology put forth
by this work may naturally reduce. Nevertheless, this approach; i.e.,
leveraging multiple discriminating morphological parameters for
defect classification, is expected to deliver significantly better classi-
fication accuracy compared to threshold-based methods and be gen-
erally applicable to any material, process, and XCT scan parameters.

Methods

Material and fabrication procedure

Plasma atomized Ti-6Al-4V Grade 5 powder (particle size range of 15 to
53 um) supplied by AP&C - a GE Additive company was used for cou-
pon fabrication in an EOS M290 machine (L-PBF method). During
fabrication, the process parameters were altered from the manu-
facturer’s recommended values to induce different types of volumetric
defects. The EOS recommended infill process parameters (i.e., 280 W
laser power, 1300 mm/sec laser speed, 40 um layer thickness, 120 um
hatch distance, 67° inter-layer rotation, and 10 mm stripe width) for Ti-
6Al-4V Grade 5 material was used. Two sets of coupons were fabri-
cated. The first set was fabricated by changing laser power and laser
speed, and the second by changing laser power and hatch distance.
Each set contained 49 coupons corresponding to + 30% adjustment in
two parameters at 10% intervals. The EOS “skywriting” and “time
homogenization” features that allow uniform energy input throughout
the cross-section of the coupons were enabled to avoid overheating
and potential KH formation adjacent to the locations of laser turning®.
As shown in Fig. 8(a), the coupons featured a cylindrical portion for
XCT scanning and a square portion for gripping. The cylindrical por-
tions of all coupons were later machined into rectangular bars of 2 mm
thickness (see Fig. 8(b)) to permit high-resolution XCT scans in the
infill region.
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X-ray computed tomography and labeling of volumetric defects
XCT scans were performed using a ZEISS Xradia 620 Versa machine. To
reveal as much as possible the morphological features of the induced
volumetric defects, the distance of the X-ray source and detector with
respect to the coupon was arranged such that the scanned volumes
were a cylinder with a diameter and height of 1 mm (see Fig. 8(b, c)),
which corresponded to an isotropic voxel size of 1 um. The scans were
performed using an X-ray source of 160 kV voltage and 25W power
passing through a ZEISS “HE1” filter to remove the low-energy photons
through the coupons*. These settings resulted in the photon trans-
mittance of 20-25%. In addition, in each scan, 1601 2D projections were
collected over a full 360 degrees rotation of the coupons.

After the completion of the scan, the volumetric tomography
data were reconstructed using the ZEISS Reconstruction software.
The reconstructed images were post-processed using Dragonfly Pro
and Image) softwares*’**® to obtain the binary images as well as to
remove the high-density phases (see Fig. 8(d-f)). The resulting
binary output file (i.e., Fig. 8(f)) was further analyzed using MATLAB
software to isolate the volumetric defects and calculate their mor-
phological parameters. To minimize false defect identification, only

defects with max. axis greater than 10 um were included in the
analysis.

Each volumetric defect was classified via human visual inspection
into one of the three defect types; viz., LoF, GEP, and KH, by five
individuals with experience in L-PBF processing and materials, and
their typical defects. For labeling, the only biases the students had
were their formation mechanisms and the general characteristics of
their shape and size as was summarized in the introduction. After
labeling, only those defects with the agreement of at least 4 out of
5 students were admitted for further analysis, the rest were rejected as
inclusive. Out of 2156 total defects, the labeling of only 1970 defects
were conclusive. Among these, 1717 were LoFs, 181 were GEPs, and 72
were KHs. The labeled defects with high confidence were only used for
constructing training data, which was an essential step for obtaining
reliable classification models. The more accurate the labelled defects
in the training data, the more different patterns can be discovered, and
more confident the models to classify both the defects in the labeled
testing data and new defects. The 186 unlabeled defects were relatively
small (smaller than 30 um) with low criticality on fatigue strength, and
they were not important to include in the analysis.
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Data availability

The XCT data are available under restricted access for having large size
in the order of TBs, which cannot be stored or transferred on com-
monly available data sharing platforms, access can be obtained by
requesting from the corresponding author.

Code availability

Defects were extracted from XCT scans using Image) and Dragonfly
Pro. Figures were generated using Origin Pro and Microsoft Power-
Point. Analysis of results was performed by MATLAB with in-house
developed codes, which can be accessed at https://doi.org/10.5281/
zenodo.6869455.
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